
Journal of Computational Physics 200 (2004) 749–768

www.elsevier.com/locate/jcp
A Cartesian method for fitting the bathymetry and tracking
the dynamic position of the shoreline in a
three-dimensional, hydrodynamic model

XinJian Chen *,1

Resource Conservation and Development Department, Southwest Florida Water Management District, 7601 Highway 301 North,

Tampa, FL 33637, USA

Received 8 January 2004; received in revised form 2 April 2004; accepted 3 May 2004

Available online 11 June 2004
Abstract

This paper presents a Cartesian method for the simultaneous fitting of the bathymetry and shorelines in a three-

dimensional, hydrodynamic model for free-surface flows. The model, named LESS3D (Lake & Estuarine Simulation

System in Three Dimensions), solves flux-based finite difference equations in the Cartesian-coordinate system (x; y; z). It
uses a bilinear bottom to fit the bottom topography and keeps track the dynamic position of the shoreline. The resulting

computational cells are hybrid: interior cells are regular Cartesian grid cells with six rectangular faces, and boundary/

bottom cells (at least one face is the water–solid interface) are unstructured cells whose faces are generally not rect-

angular. With the bilinear interpolation, the shape of a boundary/bottom cell can be determined at each time step. This

allows the Cartesian coordinate model to accurately track the dynamic position of the shorelines. The method was

tested with a laboratory experiment of a Tsunami runup case on a circular island. It was also tested for an estuary in

Florida, USA. Both model applications demonstrated that the Cartesian method is quite robust. Because the present

method does not require any coordinate transformation, it can be an attractive alternative to curvilinear grid model.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Tracking shoreline; Fitting bathymetry; Fitting boundary; Hybrid grid cells; LESS3D; Bi-linear interpolation; Flux-based

finite difference equations
1. Introduction

Three-dimensional, hydrodynamic models have been widely used in studying circulations and transport

processes in lakes, estuaries and coastal waters. While some 3D models solve the governing equations
* Tel.: +1-813-985-7481; fax: +1-813-987-6747.

E-mail address: xinjian.chen@swfwmd.state.fl.us (X. Chen).
1 Sr. Professional Engineer.

0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2004.05.004

mail to: xinjian.chen@swfwmd.state.fl.us

750 X. Chen / Journal of Computational Physics 200 (2004) 749–768
directly in the Cartesian coordinate system (e.g. [1,2]), others solve these equations in a transformed co-

ordinate system [3,4]. The purpose of transforming the coordinate system is to get a better representation of

the topography and/or boundaries, especially when the bathymetry and shorelines vary dramatically. For
example, some 3D models use the so-called r-coordinate for a better representation of the topography and

curvilinear grids for a better fit of shorelines.

The r-coordinate is obtained by dividing the vertical coordinate (z) by the total water depth. In r-co-
ordinate models, the water column is divided into a fixed number of vertical layers. The thickness of each

layer can vary in the vertical direction but the ratio of the layer thickness to the total water depth is fixed for

the same layer. Therefore, if the water depth varies, the layer thickness varies accordingly. Although a r-
coordinate model can fit the topography, it pays the price of pressure gradient errors and increased nu-

merical diffusions for areas with steep bottom slopes [5].
In a z-coordinate model, the water column is sliced into different layers with horizontal planes. Although

the vertical spacing Dz may vary in the vertical direction, each layer has the same thickness everywhere.

Model variables are placed at the same level for the same layer. Depending on the water depth, the number

of grid points in the vertical direction varies in a z-coordinate model. Shallow areas have fewer vertical grid

points than deep areas do. In most z-coordinate models, if the bottom elevation is lower than the middle

point of a layer, then the entire cell will be taken as a valid one and the bottom of the layer is the bottom in

the computation. Otherwise, the cell is abandoned and the top of the layer will be used as the bottom in the

computation. As a result of this treatment, the bottom cell in the computation always has the same
thickness as the horizontal layer. Recent improvements of z-level models involve the use of partial cells to

get a better approximation of the bottom topography [6–8]. Instead of using the thickness of the layer, the

difference between the top of the layer and the real physical bottom is used as the bottom cell thickness [8],

which is generally smaller than the layer thickness. Partial cells are still rectangular boxes and the resulting

bottom in the computation remains a staircase shape. To eliminate the staircase bottom, a piecewise linear

bottom has been used in a laterally averaged model named LAMFE that can accurately fit the topography

[7,9–11]. Fig. 1 compares different bottom treatment methods used in the z-level model LAMFE, with the

mesh shown with thin solid lines. The solid line is the piecewise linear bottom, while the dashed line and the
PartialCell

FullCell

Piecewise
LinearBottom

RealBottom

x

z

Fig. 1. Various topography treatment methods in z-level models.

X. Chen / Journal of Computational Physics 200 (2004) 749–768 751
dash-dotted line are the resulting computational bottom using full cells and partial cells, respectively. The

real bottom (the thick solid line) is also plotted in the figure to show how each bottom treatment method fits

the real bottom topography. It is clear that the piecewise linear bottom does a much better job in fitting the
bottom topography than other two methods. A similar discussion on various bottom treatment methods

can also be found in [12].

The piecewise linear bottom used in the laterally averaged 2D model LAMFE [7,9–11] bears a similarity

to the shaved cells proposed by Adcroft et al. [12]. By defining the bottom elevation at the edge of the grid,

the piecewise linear bottom used in LAMFE can be easily constructed by linking the bottom elevations of

the simulation domain with straight lines. As a result, the bottom of each individual water column has one

single slope (Fig. 1) regardless how many grid cells in the water column abut to the bottom. The resulting

piecewise linear bottom for a vertical 2D problem is slightly different from that using shaved cells because in
the shaved cell method, each grid cell abutting to the bottom is cut by a plane with its local slope. As a

result, the bottom of a water column may have more than one slope.

In the 3D model, however, the piecewise linear bottom is extended to a bilinear bottom. Similar to the

way the piecewise linear bottom is constructed in the LAMFE model, the bilinear bottom in the 3D model

is constructed using bottom elevations defined at the four corners of a rectangular grid. The bottom ele-

vation at any point within the grid is determined using the bilinear interpolation. If at least one corner of

the grid is emerged while the remaining corners are submerged, then the shoreline runs through the grid and

can be determined through the bilinear interpolation from the known water level and bottom elevations at
the four corners. As a result, the shoreline can be accurately fit in the model, too.

This paper presents a Cartesian method that uses the bilinear interpolation to fit the bathymetry and

track the dynamic position of the shoreline in a three-dimensional, hydrodynamic model named LESS3D.

In the following, governing equations for three-dimensional shallow water flows are first given, followed by

a description of the grid cells used in the 3D model LESS3D. Flux-based finite difference equations are then

presented. A test of the method against laboratory data, along with a model application to a real estuary in

Florida, is described before conclusions are drawn.
2. Governing equations

For shallow water flows in lakes and estuaries, the hydrostatic pressure assumption is generally valid in

most cases. Situations where the hydrostatic pressure assumption may be questionable are discussed in

several previous publications (e.g. [13,14]). Using the Boussinesq approximation, Reynolds averaged Na-

vier–Stokes (RANS) equations for free surface flows in shallow lakes and estuaries have the following form:

oul
oxl

¼ 0; ð1Þ
oul
ot

þ oulum
oxm

¼ /l �
1

q0

op
oxl

þ o

oxm
A
oul
oxm

� �
; ð2Þ
oc
ot

þ oumc
oxm

¼ o

oxm
B

oc
oxm

� �
þ Ss þ R; ð3Þ

where t is time; p is pressure; xl (l ¼ 1, 2, and 3) represents the Cartesian coordinates (x1 is from west to east,

x2 is from south to north, and x3 is vertical pointing upward); ul is the velocity in the xl-directions; q0 is the

reference density; ð/1;/2;/3Þ ¼ ðfu2;�fu1;�gÞ; f and g are, respectively, the Coriolis parameter and the

gravitational acceleration; c denotes concentration and can be temperature, salinity, suspended sediment

752 X. Chen / Journal of Computational Physics 200 (2004) 749–768
concentrations, or nutrient concentrations; Ss and R represent the sink/source terms and the reaction terms,

respectively; A and B are eddy viscosity and diffusivity, respectively. In this paper, the Cartesian coordinates

xl (l ¼ 1, 2, and 3) are also denoted with x, y, and z. Accordingly, u, v, and w are also used to represent
velocities in three directions. Furthermore, (A;B) in the horizontal and vertical directions are distinguished

with (Ah;Bh) and (Av;Bv), respectively.

Density in above equations is a function of temperature and salinity [15]. In Eq. (3), if the material

simulated involves settling, u3 in the advective term includes the settling velocity of the material. Eq. (1) is

the continuity equation and can be integrated over the water depth to get an equation for the free surface

og
ot

þ o

ox1

Z g

h0

u1 dz
� �

þ o

ox2

Z g

h0

u2 dz
� �

¼ r; ð4Þ

where g is the free surface elevation; h0 is the bottom elevation; and r is the net rain intensity (precipitation

minus evaporation) in cm/s. The above equation is obtained with the assumption that the flux through the

bed is zero.

Boundary conditions in the horizontal directions are specified with either free surface elevations or
velocities for open boundaries. At solid boundary, normal velocity is set to zero and the pressure gradient in

the normal direction is set to zero. Boundary conditions at the free surface and at the bottom are implicitly

specified by wind and bottom shear stresses, respectively. Details on specifying boundary conditions in the

model are described in [16].
3. Hybrid grid cells

The model uses the Cartesian grid system with N1, N2, and N3 cells in the west–east, south–north, and

vertical directions, respectively. A colocated arrangement of model variables was used, where all variables

are placed at the center of the grid cell. Fig. 2 shows the horizontal and vertical views of the computational

stencil in Cartesian coordinates. In Fig. 2, Dx, Dy, and Df are grid spacings in x-, y-, and z-directions,
respectively. Low case letters i; j, and k are grid indexes in the three directions. While Dx varies only with i,
Dy varies only with j. Df is the thickness of the horizontal layer, which is constant for the same k-index.
Three-dimensional model variables (e.g., u, v, w, p, c, etc.) at the center of the grid cell with indexes (i, j, k)
are marked with subscripts i, j, and k. For example, at the center of the grid cell, concentration c is denoted
as ci;j;k, while velocities u, v, and w are marked as ui;j;k, vi;j;k and wi;j;k, respectively. As shown in Fig. 2, model

variables at the center of the east face are denoted with the subscript group of (iþ 1=2; j; k), even though the

Cartesian grids are not necessarily uniform. At the center of the north and top faces, the subscript groups

are (i; jþ 1=2; k) and (i; j; k þ 1=2), respectively. For two-dimensional variables such as the surface eleva-
tion (g) and water depth (D), they are denoted as gi;j and Di;j at the center of the grid, as giþ1=2;j and Diþ1=2;j

on the east side of the grid, and as gi;jþ1=2 and Di;jþ1=2 on the north side of the grid.

The water depth is simply calculated from the surface elevation (g) and the bottom elevation (E) at the
center of the horizontal grid (D ¼ g� E). The model reads bottom elevation data (bathymetry) given at the

four corners of the horizontal grid. Using the bilinear interpolation, bottom elevations everywhere within

the grid are defined as follows (Fig. 3):

Eðxþ a; y þ bÞ ¼ ½ 1� b b � Eðx; yÞ Eðxþ 1; yÞ
Eðx; y þ 1Þ Eðxþ 1; y þ 1Þ

� �
1� a
a

� �
: ð5Þ

At the center of the grid cell, a ¼ b ¼ 1=2 and the bottom elevation equals to the mean of the bottom

elevations at the four corners. In Fig. 4, typical grid cells (rectangular boxes) used in the model are shown

with dotted lines. The bathymetry is given at the four corners of the cell (looking downward) with the

a

b

E

y

x

E (x+1, y)

E (x, y)

E (x+a, y+b)

E (x, y+1)

E (x+1, y+1)

Fig. 3. With the bilinear interpolation, bottom elevation everywhere within the grid can be defined.

z

y

wi,j,k+1/2

vi,j+1/2,k

y

x

vi,j+1/2,k

ui+1/2,j,k

i,j,k

∆

ρ

i+1

j-1

k-1

xi

k

j

j j+1

yj

z

x

wi,j,k+1/2

ui+1/2,j,k

pi,j,k

∆ζ

k-1

k

i i+1

k

∆

ui,j,k
vi,j,k
wi,j,k

i,j,k
η

Fig. 2. A Cartesian grid system used in the LESS3D model with a colocated arrangement of model variables. The top-left graph is a

view looking north, while the top-right and bottom graphs are views looking west and downward, respectively.

X. Chen / Journal of Computational Physics 200 (2004) 749–768 753

Fig. 4. A boundary cell with one emerged corner and three submerged corners.

754 X. Chen / Journal of Computational Physics 200 (2004) 749–768
bottom elevations (measured form a baseline elevation) at A0, B0, C0 and D0. For example, at B0 in Fig. 4,

the bottom elevation is hbiþ1=2;j�1=2. ABCD in Fig. 4 is the free surface at a certain time point. It can be seen

that one corner of the cell (D0) is emerged, while other three corners are submerged.

The bottom face A0B0C0D0 in Fig. 4 is generally a curved face. It intersects with the water surface, re-

sulting in a shoreline (D1D2 in Fig. 4). As shown in Fig. 5, shoreline D1D2 is not necessarily a straight line.

If both A0 and C0 are higher (or lower) than B0 and D0, the bottom face will have a saddle point (Fig. 5(b))
and there will be two shorelines passing through the grid. In Figs. 5(a) and (b), dashed lines are bottom

elevation contours, or shorelines for various water levels. When the water level varies, so do the cell volume,

areas of cell faces, and the shoreline (Fig. 6).

For the convenience of the presentation, let us call Cartesian grid cells that involve the bed and/or

shorelines boundary cells. For Cartesian grid cells that are on the land and do not have water in them, let us

call them land cells. For Cartesian grid cells that are in the water but are not boundary cells, let us call them

internal cells. As will be described in the next section, the LESS3D model solves Eqs. (1) through (3) using

flux-based finite difference equations for control volumes, instead of the Cartesian grid cells plotted with
dashed lines in the Fig. 4. Let us call these control volumes computational cells. For example, internal cells

are all computational cells. However, a computational cell is not always necessarily the same as a Cartesian

grid cell. For example, the multi-face control volume ABCD1D2A
0B0C0 shown in Fig. 4 is a computational

cell. Unlike a Cartesian grid cell that is always a rectangular box, a computational cell is just a multiple-face

Z

X

Y

D1

D2

Z

X

Y

D1

D2

(a) (b)

Fig. 5. The bottom face is generally curved and elevation contours (shorelines) are not necessarily straight lines. In (b), the bottom face

has a saddle point.

X. Chen / Journal of Computational Physics 200 (2004) 749–768 755
unstructured cell for which the model solves the governing equations. As can be seen from Fig. 4, a

computational cell may involve several Cartesian grid cells, of which only one cell center point is within the

computational cell. In other words, a computational cell can only have one grid cell center.

As a part of the pre-process, the model calculates and saves geometric parameters of all grid cells at time

¼ 0 s. These geometric parameters include the water volume, side areas, and the location of the centroid of

the water volume of the Cartesian grid cell. Note that while the volume of a Cartesian grid cell is DxDyDf
the water volume may be smaller than DxDyDf due to the fact that some portions of the grid cell may be
chopped off by solid boundaries, including the bottom and the shoreline. The centroid of the water volume

of a grid cell is the mass center for the portion that can actually contain water. After these geometric

parameters are calculated at time ¼ 0 s, the model only needs to calculate the geometric parameters for

surface boundary cells at the subsequent time steps. An additional geometric parameter the model calcu-

lates at each time step is the wetted free surface areas (see ABCD1D2 in Fig. 4) of boundary cells. As will be

described in the next section, the instantaneous values of these geometric parameters are used in the model

in solving the equations.

The concept of using multi-face control volumes to fit the bed in a three-dimensional, z-coordinate
hydrodynamic model is akin to that of using shaved cells to fit the bed [12], even though it was developed

and implemented in the LESS3D model by the author without the prior knowledge of the existence of [12].

Comparing to the shaved cells used in [12], one of the major advantages of using bilinear bottom is that the

bilinear bottom allows the bottom face to be a curved face and can thus yield a better fit of the bed var-

iation, especially when the bottom face has a saddle point. Although the use of shaved cells can generate a

piecewise bottom (instead of a staircase bottom) for a vertical 2D problem, this author believes that shaved

cells proposed in [12] cannot guarantee the elimination of a staircase bottom in a 3D situation where the

bed varies in both the x- and y-directions (in the two test cases shown in [12], the bed only varies in one

Fig. 6. The change of the shoreline. The thick solid line is the shoreline at one time point. At another time point when the water level is

lower, the shoreline changes to a new position shown with the thick dashed line.

756 X. Chen / Journal of Computational Physics 200 (2004) 749–768
direction). The reason is that each grid cell abutting to the bottom can only be shaved by one plane with a

local slope in [12]. From Fig. 4, it is clear that to avoid a staircase bottom, the plane used to shave the grid

cell needs to contain all four corners of the bottom face (A0, B0, C0, and D0 in the figure). Unfortunately, it is

not always possible to have all four points in one plane. As a result, two planes are generally needed to

shave the bottom grid cell to avoid a staircase bottom.
In summary, computational cells used in the LESS3D model are hybrid grid cells that include both

rectangular boxes for internal areas of the computational domain and multi-face control volumes near the

bottom and the shorelines. As a result, the model can fit both the bed and shorelines. As the water level

varies, shapes of surface computational cells near the shorelines may vary accordingly. Using the bilinear

interpolation, geometric parameters of these surface computational cells can be determined and the

shoreline variation can be precisely tracked.
4. Flux-based finite difference equations

Unlike other finite difference methods, the LESS3D model takes advantage of the both the finite volume

method and the finite difference method by using flux-based finite difference equations to solve RANS

equations for free-surface flows. By treating each computational cell as a control volume, the flux-based

finite difference equations are derived from the mass and momentum balances of the computational cell.

Fig. 7 gives representative shapes of an internal computational cell (Fig. 7(a)) and three kinds of boundary

cells (Figs 7(b)–(d)). In the figure, grid cells are plotted with thin dashed lines. Shaded areas bounded with

(c) (d)

(a) (b)

Fig. 7. Shapes of various computational cells. Grid cells are plotted with thin dashed lines. Shaded areas bounded with thick dashed

lines are boundaries. Arrows represent fluxes passing through the side areas into the computational cell. Small squares are the locations

of the centroids of the computational cells. Small circles are centers of the grid cells. (a) is an internal cell and (b)–(d) are boundary

cells.

X. Chen / Journal of Computational Physics 200 (2004) 749–768 757
thick dashed lines are boundaries. Arrows represents fluxes passing through the side areas into the com-

putational cell. Small squares are the locations of the centroids of the computational cells, while small

circles are centers of the grid cells.

For each computational cell in the domain, the flux-based finite difference equation for the momentum

equation can be written as

unþ1
lcc � unlcc

Dt
¼ ui �

h1
q0V

n
i;j;k

�V

op
oxl

� �nþ1

dV � 1� h1
q0V

n
i;j;k

�V

op
oxl

� �n

dV þ Hn
l

þ 1

V n
i;j;k

ani;j;kþ1=2 Av
oul
ox3

� �nþ1

i;j;kþ1=2

"
� ani;j;k�1=2 Av

oul
ox3

� �nþ1

i;j;k�1=2

#
; ð6Þ

where superscripts n and nþ 1 denote the previous and present time instants, respectively; subscript cc

denotes the centriod of the computational cell; h1 is an implicit parameter for momentum equations; V is

758 X. Chen / Journal of Computational Physics 200 (2004) 749–768
the volume of the computational cell; a is the area of the side face of the computational cell (aniþ1=2;j;k,

ani;jþ1=2;k, and ani;j;kþ1=2 are areas of the east, north, and top faces, respectively); unþ1
lcc and unlcc are velocities at

the centroid of the computational cell at the new and previous time steps, respectively; and Hn
l represents

the explicit treatment of the convective terms and horizontal eddy viscosity terms

Hn
l ¼ 1

V n
i;j;k

a Ah
oul
ox1

��(
� u1ul

��n
iþ1=2;j;k

� a Ah
ou
ox1

��
� u1ul

��n
i�1=2;j;k

þ a Ah
oul
ox2

��
� u2ul

��n
i;jþ1=2;k

� a Ah
ou
ox2

��
� u2ul

��n
i;j�1=2;k

� ½au3ul�ni;j;kþ1=2 þ ½au3ul�ni;j;k�1=2

)
: ð7Þ

The free-surface location is calculated using the following finite difference equation:

gnþ1
i;j ¼ gni;j �

Dth2
asi;j

½Unþ1
1iþ1=2;j � Unþ1

1i�1=2;j þ Unþ1
2i;jþ1=2 � Unþ1

2i;j�1=2�

� Dtð1� h2Þ
asi;j

½Un
1iþ1=2;j � Un

1i�1=2;j þ Un
2i;jþ1=2 � Un

2i;j�1=2� þ Dtrnþ1=2; ð8Þ

where h2 represents the implicitness for the continuity equation; and U1 and U2 are vertically integrated

fluxes

Un
1iþ1=2;j ¼

Xkum
k¼kun

un1iþ1=2;j;ka
n
iþ1=2;j;k; Un

2i;jþ1=2 ¼
Xkvm
k¼kvn

un2i;jþ1=2;ka
n
i;jþ1=2;k;

Unþ1
1iþ1=2;j ¼

Xkum
k¼kun

unþ1
1iþ1=2;j;ka

n
iþ1=2;j;k; Unþ1

2i;jþ1=2 ¼
Xkvm
k¼kvn

unþ1
2i;jþ1=2;ka

n
i;jþ1=2;k;

ð9Þ

where kun and kum are, respectively, the bottom and top k-indexes on the east side of the grid; and kvn and kvm
are the bottom and top k-indexes on the north side of the grid. As mentioned before, subscript group

(iþ 1=2; j; k) indicates value at the center of the east face of the cell, while subscript group (i; jþ 1=2; k)
represents value at the center of the north face of the cell. A third order interpolation is used in the model to
obtain horizontal velocities (u1 and u2) at the centers of the east and north faces from those at the centers of

grid cells.

The flux-based finite difference equation for the transport equation takes the following form:

V nþ1
i;j;k c

nþ1
i;j;k � V n

i;j;kc
n
i;j;k

Dt
¼ Fn

i�1=2;j;k � Fn
iþ1=2;j;k þ Fn

i;j�1=2;k � Fn
i;jþ1=2;k þ Fn

i;j;k�1=2 � Fn
i;j;kþ1=2

þ aniþ1=2;j;k Bh
oc
ox1

� �n

iþ1=2;j;k

� ani�1=2;j;k Bh
oc
ox1

� �n

i�1=2;j;k

þ ani;jþ1=2;k Bh
oc
ox2

� �n

i;jþ1=2;k

� ani;j�1=2;k Bh
oc
ox2

� �n

i;j�1=2;k

þ ani;j;kþ1=2 Av
oc
ox3

� �nþ1

i;j;kþ1=2

� ani;j;k�1=2 Av
oc
ox3

� �nþ1

i;j;k�1=2

þ Ss þ R; ð10Þ

where Fiþ1=2;j;k, Fi;jþ1=2;k and Fi;j;kþ1=2 are advective fluxes of the material flowing out of the cell through the

east, north, and top faces.

X. Chen / Journal of Computational Physics 200 (2004) 749–768 759
The left-hand side of Eq. (6) represents the local acceleration of the water particle at the centroid of the

computational cell in the xl-direction. As a first order approximation, it can related to those at the center of

the grid cell with the indexes i, j, and k as follows:

oul
ot

����
cc

¼ oul
ot

����
i;j;k

þr oul
ot

� �����
i;j;k

� d~s; ð11Þ

where r denotes the divergence operator; and d~s is a vector pointing from the center of the grid cell (i; j; k)
to the centroid of the computational cell: d~s ¼ dx~iþ dy~jþ dz~k, where dx, dy, and dz are the projections of

the distance between the center of the grid cell and the centroid of the computational cell in the x1-, x2-, and
x3-directions, respectively.

The finite difference form of Eq. (11) is

unþ1
lcc � unlcc

Dt
¼

unþ1
li;j;k

� unli;j;k
Dt

þr
unli;j;k � un�1

li;j;k

Dt

 !�����
i;j;k

� d~s: ð12Þ

For internal cells, because the center of the grid cell is the centroid, jd~sj ¼ 0 and the above two equations are

reduced to

unþ1
lcc � unlcc

Dt
¼

unþ1
li;j;k

� unli;j;k
Dt

: ð13Þ

For bottom computational cells that do not involve shorelines, if the vertical length scale of the compu-

tational cell is much smaller than the horizontal length scale (this is true for most shallow water flows), dx
and dy are insignificant in comparison with the horizontal grid size [11]. Therefore, changes of the local
accelerations of the water particle in x1- and x2-directions due to dx and dy are negligible in comparison with

that due to dz, or

oul
ot

����
cc

ffi oul
ot

����
i;j;k

þ o

ot
oul
ox3

� �����
i;j;k

dz: ð14Þ

Furthermore, if a log-layer distribution of velocity is assumed for fully developed turbulence, we have

oul
ox3

¼ u�l
jðx3 � h0Þ

¼ ul
ðx3 � h0Þ ln½ðx3 � h0Þ=z0�

; l ¼ 1 and 2; ð15Þ

where j is the von Karman constant (0.41); u�l is the frictional velocity; z0 ¼ ks=30, and ks is the bottom

roughness. Therefore,

oul
ot

����
cc

¼ oul
ot

����
i;j;k

þ dz
ðx3 � h0Þ ln½ðx3 � h0Þ=z0�

oul
ot

����
i;j;k

; l ¼ 1 and 2: ð16Þ

Or,

unþ1
lcc � unlcc

Dt
¼

unþ1
li;j;k

� unli;j;k
Dt

þ dz
ðx3 � h0Þ ln½ðx3 � h0Þ=z0�

unli;j;k � un�1
li;j;k

Dt
; l ¼ 1 and 2: ð17Þ

Substituting the local acceleration on the left-hand side of Eq. (6) with Eq. (12) or its reduced forms

(Eqs. (13) and (17)) where appropriate, Eqs. (6) and (8) can be efficiently solved using a predictor–corrector

procedure named the free-surface correction (FSC) method. Details about the FSC method are explained in

[16].

760 X. Chen / Journal of Computational Physics 200 (2004) 749–768
The LESS3D model can be run either with or without the hydrostatic pressure assumption. When the

model is run with the hydrostatic pressure assumption, only the two horizontal velocity components are

solved from Eq. (6). In this case, the following flux-based finite difference equation for the mass balance is
used to calculate the vertical velocity component after unþ1

1 and unþ1
2 are found

wnþ1
i;j;kþ1=2ai;j;kþ1=2 ¼ wnþ1

i;j;k�1=2ai;j;k�1=2 þ F nþ1
i�1=2;j;k � F nþ1

iþ1=2;j;k þ F nþ1
i;j�1=2;k � F nþ1

i;jþ1=2;k; ð18Þ

where F represents flux of water flowing out of the computational cell through the side faces.
As mentioned above, the LESS3D model is able to precisely track the variation of the shoreline by

updating and bookkeeping actual water volumes and side and top areas of each top cells at each time step.

If the water volume is zero for a water column with the horizontal grid indexes of (i, j), the grid (i, j) is a dry
grid. Otherwise, it is a wet grid. Nevertheless, when the computation marches from one time step to the next

time step, a wet grid is not necessarily a computational grid. The criterion for the model to determine if a

wet grid is a computational grid or not at each time step is that the water level at the center of the grid

should be higher or equal to the middle point of knth layer, where kn is the k-index of the bottom layer for

the horizontal grid (i; j). Fig. 6 shows examples of wet horizontal grids that are not included in the com-
putation. The shaded grids shown in the figure are those grids. For such a wet horizontal grid that is not

included in the computation, its surface elevation and concentrations are estimated using the averaged

values of its neighboring computational grids that are directly connected to it [16]:

�g ¼ 1

Nn

XNn

l¼1

gnþ1
l ; �c ¼ 1

Nn

XNn

l¼1

cnþ1
l ; ð19Þ
0

0.25

0.5

Z
 (

m
)

0

5

10

15

20

25

X(m)

0

10

20

30

Y(m)

Fig. 8. A laboratory experiment of runup of a solitary wave on a circular island was conducted in a 30 m� 25 m wave basin. The wave

maker is located at x ¼ 0 m.

X. Chen / Journal of Computational Physics 200 (2004) 749–768 761
where �g and �c are averages of surface elevations and concentrations of the neighboring computational

grids, which are labeled with the subscript l; and Nn is the total number of the neighboring computational

grids. To ensure mass conservations, final results of all grids involved need to be corrected:

gnþ1
l (gnþ1

l � dg�; cnþ1
l (cnþ1

l � dc�;

gnþ1
0 (�g� dg�; cnþ1

0 (�c� dc�;
ð20Þ
Time(s)

W
at

er
 S

u
rf

ac
e

(m
)

0 2 4 6 8 10 12 14 16 18 20 220.28

0.3

0.32

0.34

0.36

0.38

Time(s)

W
at

er
 S

u
rf

ac
e

(m
)

0 2 4 6 8 10 12 14 16 18 20 220.28

0.3

0.32

0.34

0.36

0.38

Time(s)

W
at

er
 S

u
rf

ac
e

(m
)

0 2 4 6 8 10 12 14 16 18 20 220.28

0.3

0.32

0.34

0.36

0.38

Fig. 9. Comparison of simulated surface elevation (solid lines) and measured surface elevations (circles) immediately in front of (top

graph), to the side of (middle graph), and behind (bottom graph) the island.

762 X. Chen / Journal of Computational Physics 200 (2004) 749–768
where the symbol(means replacing the left-hand side with the right-hand side; the subscript 0 denotes the

wet grid that is not computed and needs to be estimated; and dg� and dc� are corrections and take the

following forms:

dg� ¼
ð�g� gni;jÞan0

at
; dc� ¼ ½–V n

0 þ ðgnþ1
0 � gn0Þan0��c� –V n

0c
n
0 � dg

PNn
l¼1 c

nþ1
l anl

–V t
; ð21Þ

where anl represents the surface water area (the actual wet surface area) of grid l; –V n
0 is the water volume of

the wet grid whose surface elevation and concentrations need to be estimated; and at and –V t are sums of

water surface areas (actual wet surface areas) and water volumes of all grids involved in the estimation,
including the neighboring computational grids and the wet grid to be estimated.
5. Tests of the method

The Cartesian method described above for fitting the bed and tracking the shoreline variation was tested

with laboratory data reported in [17,18] for a Tsunami runup case on a circular island. Liu et al. [18] and

Bradford and Sanders [19] used the same experiment data to test their horizontal 2D models. The 2D model
Fig. 10. Simulated snapshots of the wave runup on the circular island at t ¼ 7:6, 9, 10, 11, 12, and 14 s.

X. Chen / Journal of Computational Physics 200 (2004) 749–768 763
of Liu et al. [18] is a finite difference model using an explicit finite difference leap-frog scheme, while the 2D

model of Bradford and Sanders [17] is a finite volume model.

The laboratory experiment was conducted in a wave basin at the US Army Engineer Waterways Ex-
periment Station, Coastal Engineering Research Center. The wave basin is 0.32 m deep, 30 m wide, and 25 m

long (Fig. 8). The wavemaker is located at x ¼ 0 m in Fig. 8 and generates the following solitary wave [19]:

g ¼ H sech2 csðt � T Þ
ls

� �
; ð22Þ

where cs ¼ cg½1þ H=ð2dÞ�; ls ¼ d
ffi
4dCs=ð3HcgÞ

p
; cg ¼

ffiffiffiffiffiffi
gd

p
; d is the depth of the basin (0.32 m); and T is the

time at which the wave crest enters the basin. In Eq. (22), H ¼ 0:032 m and T ¼ 2:45 s.

For this three-dimensional wave runup problem, this study used the LESS3D model with the above-

mentioned bed-fitting and shoreline-tracking approach. The domain was discretized using 93� 103� 6 ¼
57,474 grid cells. While each vertical layer has the same spacing (Df) of 0.1 m, the horizontal grid sizes (Dx
and Dy) vary within a range between 0.2 and 0.4 m. Higher resolution was used near the island and near the

upstream and downstream boundaries. In the model run, Eq. (22) was used as the upstream boundary
condition at x ¼ 0 m. A radiation boundary condition similar to that used in [18] was used for the

downstream boundary at x ¼ 25 m. The model was run without using the hydrostatic pressure assumption.

The time step used was 0.1 s. Fig. 9 gives comparisons of simulated and measured surface elevations at

three locations near the island. In the figure, model results are plotted with solid lines, while measured

surface elevations are plotted with circles. The top graph of Fig. 9 compares model results with measured

data immediately in front of the island, while the middle and bottom graphs compare modeled surface

elevations with those measured to the side of and behind the island. Bradford and Sanders [19] also
Fig. 11. Three-dimensional views of simulated velocity vectors at the surface layer around the circular island at t ¼ 7:6, 9, 12, and 14 s.

X(m)

Y
(m

)

10 12 14 16
12

14

16

18

t=9s

(a)

X(m)

Y
(m

)

10 12 14 16
12

14

16

18

t=10s

(b)

X(m)

Y
(m

)

10 12 14 16
12

14

16

18

t=11s

(c)

X(m)

Y
(m

)

10 12 14 16
12

14

16

18

t=12s

(d)

Fig. 12. Dynamic positions of the shoreline (solid lines) at t ¼ 9, 10, 11, and 12 s as the solitary wave passes on the circular island. The

original shoreline at t ¼ 0 s is a circle (dashed lines).

764 X. Chen / Journal of Computational Physics 200 (2004) 749–768
compared their model results with measured data at the same three locations. As can be seen from Fig. 9,
predicted surface elevations agree reasonably well with laboratory data. This study also ran the LESS3D

model with the hydrostatic pressure assumption to see the significance of the non-hydrostatic effect on the

flow. It turned out that the inclusion of the non-hydrostatic effect indeed improved the model prediction,

but the improvement is not very significant in this solitary wave case.

Fig. 10 shows six snapshots of free-surface profiles at time¼ 7.6, 9, 10, 11, 12, and 14 s. In [18], Liu et al.

presented simulated free-surface profiles at time¼ 7, 9, 11, 13, and 15 s. Their results are very similar to

those shown in Fig. 10. In Fig. 10(a), the solitary wave approaches the island and the time is 7.6 s. At

time¼ 9 s (Fig. 10(b)), the wave reaches the island and a wave runup occurs, causing a wave diffraction and
resulting in a circular wave spreading out from the front of the island. Because of the shape of the island,

X. Chen / Journal of Computational Physics 200 (2004) 749–768 765
the flow field becomes three-dimensional. A trapped wave is generated on each side of the island. As the

solitary wave propagates around the island, the trapped waves propagate along the shoreline of the island

(Figs. 10(b)–(e)). At around time¼ 12 s (Fig. 10(e)), the solitary wave passes the island and the two trapped
waves collide in the lee-side of the island. The concentrated wave energy in the lee side of the island causes

wave diffraction and results in an elliptic wave propagating from the lee-side of the island outward

(Fig. 10(f)).

Fig. 11 presents four snapshots of simulated velocity distributions at the surface layer of the water

column at time¼ 7.6, 9, 12, and 14 s. The velocity vectors in Fig. 11 are three-dimensional and include not

only u- and v-components, but also the w-component. It can be seen from the figure that as the wave passes

around the island, the water velocity near the shoreline becomes much larger than those away from the

shoreline. Although the vector plots shown in the figure are similar to those reported in [18,19], a direct and
detailed comparison between simulated velocity distributions in this study and those in either Liu et al. [18]

or Bradford and Sanders [19] is impossible due to several obvious reasons. One of these reasons is that

velocity vectors presented in [18] (or contours of the u-velocity for one case and contours of velocity

magnitude for another case presented in [19]) are 2D model results and are thus depth-averaged, while those

shown in Fig. 11 are 3D model results at the surface layer.

In Fig. 12, shorelines (viewing from the top) at time¼ 9, 10, 11, and 12 s are plotted with thick solid lines.

To see the deviations of these shorelines from the original one at time¼ 0 s (a circle), the original shoreline

is plotted with dashed lines. In the figure, the grid mesh is also plotted. As the solitary wave propagates
around the island, the dynamic position of the shoreline is tracked in the model.

The Cartesian method for fitting the bed and tracking the shoreline variation was also tested for a real

estuary. The lower portion of the Alafia River in Florida (Fig. 13) was used for the test. The river is narrow

and meandering except for its most downstream 4 km where it is wider and has a few islands. There are five

USGS (United States Geological Survey) continuous recording stations along the Alafia River. Surface

elevation and salinity data were collected at 15-min intervals at four downstream stations shown in Fig. 13.

At the most upstream station (Alafia River at Lithia) located about 24 km upstream from the mouth, only
Fig. 13. The Alafia River is a major tributary to Tampa Bay in Florida, USA.

766 X. Chen / Journal of Computational Physics 200 (2004) 749–768
flow was measured, because no tidal signal can be detected there. Normally, tide can be observed at about

18 km upstream from the mouth, although saline water is usually limited only to the downstream 12 km.

Due to the physical configuration of the river, hydrodynamics in the river was first simulated with a
laterally averaged 2D model [11] for the entire reach of 24 km from the mouth (Alafia River at Gibsonton)

to Alafia River at Lithia. The 3D model LESS3D was used for the most downstream 4.5 km of the river,

from the mouth to about 850 m downstream from Highway 301 (Fig. 13) to test the Cartesian method for

fitting the bed variation and tracking the dynamic position of the shoreline. Measured surface elevation,

velocity, and salinity at four locations shown in Fig. 13 were used for the boundary conditions and for

calibrations/verifications of the 2D and 3D models. While the downstream boundary conditions for 3D

runs are the same as those for the 2D runs, the upstream boundary conditions used in 3D runs are sim-

ulated 2D model results.
Fig. 14. Simulated velocity and salinity distributions in the Lower Alafia River at a high tide (a) and a low tide (b). Shorelines at the

low tide are quite different from those at the high tide. The presence of two islands is more evident at the low tide.

X. Chen / Journal of Computational Physics 200 (2004) 749–768 767
The computational domain of the Lower Alafia River was disrectized with a horizontal mesh of

Dx ¼ 100 m and Dy ¼ 60 m and a vertical spacing Df varying between 0.3 and 0.5 m. Numbers of grids in

the x-, y-, and z-directions are 45, 18, and 12, respectively, resulting in a total of 9720 grid cells. The length
of the simulation was a 320-day period from May 10, 1999 to March 24, 2000. The time step used for the

3D model runs was Dt ¼ 150 s. Predicted salinity and surface elevation at the USGS Alafia River near

Gibsonton station were compared with measured data. The LESS3D model was able to yield reasonably

good model results that agree well with measured field data. Details on the comparisons of model results

and measured 15-min data are reported in [16] and are omitted. To demonstrate the robustness of the

method presented here, 3D plots of simulated velocity and salinity distributions at a high tide and a low tide

are shown in Fig. 14. Different colors (gray scales in the printed issue) in the figure represent different

salinity ranges. Velocity distributions are plotted with vectors. Closed areas inside the river are three small
islands that are partially submerged when the water level is high and emerged when the water level is low. A

comparison of shorelines at the high tide with those at the low tide indicates that the wetting/drying process

is well handled by the model. Because of a low water level, emerged areas of the islands in Fig. 14(b) are

larger than those in Fig. 14(a). Near the south bank at about 1 km from the downstream boundary, a

shallow area is submerged in Fig. 14(a), but exposed to the air in Fig. 14(b). Fig. 14 indicates that flow fields

and salinity distributions in the lower portion of the Alafia River pattern are three-dimensional due to the

existence of islands and some shallow areas.
6. Conclusions

A Cartesian method for fitting the bed variation and tracking the dynamic position of the shoreline has

been developed and implemented in a three-dimensional, Cartesian grid model for free-surface flows named

LESS3D. Although the model uses the so-called z-level discretization in the vertical direction, it can fit the

topography nicely due to the use of the bilinear bottom. The resulting grid cells are hybrid grid cells, in-

cluding regular rectangular boxes and boundary cells whose side faces are generally not rectangular. The
model can fit both the bed and the dynamic shoreline by bookkeeping volumes and side face areas (in-

cluding wetted surface areas) of grid cells. Therefore, it has the potential to be an attractive alternative to

curvilinear grid models.

The model presented in the paper takes advantage of the finite difference method and the finite volume

method by treating each computational cell as a control volume. Flux-based finite difference equations are

derived from the mass and momentum balances for each control volume. For internal cells, these flux-based

finite difference equations are the same as the finite difference equations derived directly from the RANS

equations. Because the LESS3D model solves the flux-based finite difference equations, it conserves both
mass and momentum.

The Cartesian method was verified with a laboratory experiment before it was applied to a real estuary in

Florida, USA. Model results agree well with both the laboratory experiment of a wave runup on a circular

island and the tidal flow in the Lower Alafia River in Florida where the shoreline variation is more sig-

nificant. By accurately following the shoreline variations, the wetting/drying phenomenon can be handled

automatically. Although many previous models (e.g. [3,18,19]) monitor the wetting and drying of the

computational domain, these models cannot accurately follow the shoreline change because they do not

include the sub-grid variation of the shoreline. In these models, a grid is either entirely included or entirely
excluded in the computation, depending on the criterion used for the decision. For example, in [19], the

averaged water depth of the grid that is calculated by dividing the actual water volume by the entire grid

area (instead of the wet surface area) is compared with a user-defined small number (e) to decide whether

the grid is included in the computation or not. Therefore, although these models can handle the wetting and

768 X. Chen / Journal of Computational Physics 200 (2004) 749–768
drying, the resulting shorelines are normally composed of zigzag lines that give a less accurate represen-

tation of the actual coastline than LESS3D.

It is worth pointing out that the Cartesian method presented in this paper allows the water depth to go to
zero near the shoreline. This property is very useful in shallow water applications where water quality and

ecological processes are significant near shorelines where water depth is shallow. In such cases, the present

model offers an advantage over r-level models that require a minimum water depth to avoid numerical

stability issues due to very thin r-layers.
References

[1] P.B. Crean, T.S. Murty, J.A. Stronach, in: Mathematical Modeling of Tides and Estuarine Circulation, Lecture Notes on Coastal

and Estuarine Studies, vol. 30, Springer, New York, 1988, 471pp.

[2] V. Casulli, R.T. Cheng, Semi-implicit finite difference methods for three-dimensional shallow water flow, Int. J. Numer. Methods

Fluids 15 (1992) 629–648.

[3] Y.P. Sheng, A three-dimensional mathematical model of coastal, estuarine and lake currents using boundary fitted grid, Report

No. 585, A.R.A.P. Group of Titan Systems, New Jersey, Princeton, NJ, 1986.

[4] A.F. Blumberg, G.L. Mellor, A description of a three-dimensional coastal ocean circulation model, in: N.S. Heaps (Ed.), Three-

Dimensional Coastal Ocean Models, AGU Coastal and Estuarine Series, vol. 4, American Geophysical Union, Washington, DC,

1987.

[5] G.L. Mellor, L.Y. Oey, T. Ezer, Sigma coordinate pressure gradient errors and the seamount problem, J. Atmos. Oceanic

Technol. 15 (1998) 1122–1131.

[6] R.C. Pacanowski, A. Gnanadesikan, Transient response in a Z-level ocean model that resolves topography with partial cells,

Monthly Weather Rev. 126 (1998) 3248–3270.

[7] X. Chen, Responses of a hybrid z-level model to various topography treatment methods for a boundary value problem and an

initial value problem, in: M.L. Spaulding (Ed.), Estuarine and Coastal Modeling, Proceedings of the 7th International Conference,

ASCE, 2001, pp. 614–627.

[8] M.D.J.P. Bijvelds, J. van Kester, G.S. Stelling, A comparison to two 3D shallow water models using sigma-coordinates and z-

coordinates in the vertical direction, in: M.L. Spaulding, H. Lee Butler (Eds.), Estuarine and Coastal Modeling, Proceedings of the

6th International Conference, ASCE, 1999, pp. 130–147.

[9] X. Chen, M.S. Flannery, Use of a hydrodynamic model for establishing a minimum freshwater flow to the lower hillsborough

river, in: M.L. Spaulding, A.F. Blumberg (Eds.), Estuarine and Coastal Modeling, Proceedings of the 5th International

Conference, ASCE, 1997, pp. 663–678.

[10] X. Chen, M.S. Flannery, D.L. Moore, Response times of salinity in relation to changes in freshwater inflows in the lower

Hillsborough river, Florida, Estuaries 23 (2000) 735–742.

[11] X. Chen, Using a piecewise linear bottom to fit the bed variation in a laterally averaged, z-coordinate hydrodynamic model, Int. J.

Numer. Methods Fluids 44 (2004) 1185–1205.

[12] A. Adcroft, C. Hill, J. Marshall, Representation of topography by shaved cells in a height coordinate ocean model, Monthly

Weather Rev. 125 (1997) 2293–2315.

[13] V. Casulli, G.S. Stelling, Numerical simulation of 3D quasi-hydrostatic free-surface flows, J. Hydraulic Eng. 124 (1998) 678–686.

[14] X. Chen, A fully hydrodynamic model for three-dimensional, free-surface flows, Int. J. Numer. Meth. Fluids 42 (2003) 929–952.

[15] UNESCO, Algorithms for computation of fundamental properties of seawater, UNESCO Technical Papers in Marine Science,

Number 44, UNESCO, Paris, 1983, 53pp.

[16] X. Chen, A free-surface correction method for simulating shallow water flows, J. Comput. Phys. 189 (2003) 557–578.

[17] M.J. Briggs, C.E. Synolakis, G.S. Harkins, D.R. Green, Laboratory experiment of Tsunami runup on a circular island, Pure Appl.

Geophys. 144 (1995) 569–593.

[18] P.L.-F. Liu, Y.-S. Cho, M.J. Briggs, U. Kanoglu, C.E. Synolakis, Runup of solitary waves on a circular island, J. Fluid Mech. 302

(1995) 259–295.

[19] S.F Bradford, B.F. Sanders, Finite-volume model for shallow-water flooding of arbitrary topography, J. Hydraulic Eng. 128

(2002) 289–298.

	A Cartesian method for fitting the bathymetry and tracking the dynamic position of the shoreline in a three-dimensional, hydrodynamic model
	Introduction
	Governing equations
	Hybrid grid cells
	Flux-based finite difference equations
	Tests of the method
	Conclusions
	References

